
A DFA with Extended Character-set
for Fast Deep Packet Inspection

Cong Liu† Ai Chen‡ Di Wu† Jie Wu§
†Department of Computer Science, Sun Yat-sen University

‡Shenzhen Institutes of Advanced Technologies, Chinese Academic of Science
§Department of Computer and Information Sciences, Temple University

Abstract—Deep packet inspection (DPI), based on regular
expressions, is expressive, compact, and efficient in specifying
attack signatures. We focus on their implementations based on
general-purpose processors that are cost-effective and flexible to
update. In this paper, we propose a novel solution, called deter-
ministic finite automata with extended character-set (DFA/EC),
which can significantly decrease the number of states through
slightly extending the character-set. Different from existing state
reduction algorithms, our solution requires only a single memory
access for each byte in the traffic payload, which is the minimum.
We perform experiments with the Snort rule-sets. Results show
that, compared to DFA, a DFA/EC can be over four orders of
magnitude smaller, has smaller memory bandwidth, and runs
faster. We believe that DFA/EC will lay a groundwork for a new
type of state compression technique in fast packet inspection. 1

Index Terms—Deep packet inspection, regular expression,
deterministic finite automata, extended character-set.

I. INTRODUCTION

Deep packet inspection (DPI) processes packet payload con-
tent in addition to the structured information in packet headers.
DPI is becoming increasingly important in classifying and
controlling network traffic. Well-known internet applications
of DPI include: network intrusion detection systems that iden-
tify security threats given by a rule-set of signatures, content-
based traffic management that provides quality of service and
load balancing, and content-based filtering and monitoring that
block unwanted traffic. Due to their wide application, there is
a substantial body of research work [1], [2], [3], [4], [5] on
high-speed DPI algorithms in the literature, in which different
automata for single-pass high-speed inspection are proposed
based on either software or hardware implementations.

Traditional packet inspection algorithms have been limited
to comparing packets to a set of strings. Newer DPI systems,
such as Snort [6], [7] and Bro [8], use rule-sets consisting
of regular expressions, which are more expressive, compact,
and efficient in specifying attack signatures. Hardware-based
approaches exploit parallelism and fast on-chip memory, and

1This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grants 61003241,61003242, 61003296,
Natural Science Foundation of Guangdong Province (10451027501005630),
Fundamental Research Funds for the Central Universities (09LGPY56),
Doctoral Fund of Ministry of Education of China (20100171120047), SRF
for ROCS, SEM (2011-508), National S&T Major Project of China under
Grant No. 2011ZX03005-001, Guangdong S&T Major Project under Grant
No. 2009A080207002, Shenzhen Fundamental Research Program under Grant
No. JC201005270332A, and by the National Science Foundation (NSF) under
Grants CCF 1028167, CNS 0948184 and CCF 0830289.

are able to create compact automata. However, it is more cost-
effective and flexible to update when small on-chip lookup
engines or general-purpose processors are used together with
automata stored in off-chip commodity memory. In this paper,
we focus on a general-purpose processor approach.

The throughput of general-purpose processor approaches
are limited by memory bandwidth. Therefore, it is critical to
minimize the number of memory (off-chip memory) accesses
for each byte in the traffic payload. Implementations of regular
expressions, such as non-deterministic finite automata (NFAs),
have a non-deterministic number of memory accesses per byte.
Another critical issue is to reduce the size of the automata
stored in memory in order to reduce the cost of memory,
improve the scalability for a larger number of rules, and
increases the inspection speed (with the use of cache memory).
While deterministic finite automata (DFAs) implementations
of regular expressions take only one memory accesses per
byte, they often require a very large memory capacity, which
undermines their scalability in real applications. Therefore,
conventional DFA and NFA are impractical in real systems.

Recent research effort has been focused on reducing the
memory requirement of DFAs, and they can be divided into the
following categories: (1) reducing the number of states [1], [9],
[10], (2) reducing the number of transitions [2], (3) reducing
the bits encoding the transitions [3], [11], and (4) reducing
the character-set [12]. Unfortunately, all of these approaches
compress DFAs at the cost of increased memory accesses. The
amount of compression in transition reduction and character-
set reduction is bounded by the size of the character-set
since there is at least one transition in each state. We focus
on state reduction, a more potential approach in reducing
memory requirement, and our approach can incorporate the
other approaches to achieve further memory reduction.

We propose a novel state reduction solution, called
deterministic finite automata with extended character-set
(DFA/EC). We first introduce DFA/EC as a general model
of DFA, which removes part of a DFA state and incorporates
this part with the set of input characters into the extended
character set. However, simply doing this cannot reduce the
size of the transition table since the increase in the size of
the extended character set can be more significant than the
decrease in the number of states. Our main contribution is
an efficient implementation of DFA/EC, which contains an
encoding method. This encoding method encodes the part of

2

TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Meaning Note
N (D) The set of NFA(DFA) states D ⊂ 2N

N1 The set of main states of a DFA/EC N1 ∪N2 = N
N2 The set of complementary states N1 ∩N2 = φ

D1 The set of main DFA states D1 = 2N1

D2 The set of complementary program states D2 = 2N2

T e The transition function of the main DFA
C(Ce) The original (extended) character-set Ce = C × B
He&A The complementary program

the removed DFA state into a single bit so that the the size of
the extended character set merely doubles as the number of
states drops by orders of magnitude. The main contributions
of this paper are summarized as follows:

1) We introduce DFA/EC, a general DFA model that incor-
porates partial DFA state into the set of input characters.

2) We provide an efficient implementation of inspection
program based on our DFA/EC model, which results in
a compact transition table and a fast inspection speed.

3) We prove that DFA/EC is equivalent to DFA.
4) We perform extensive evaluation to compare DFA/EC

with related algorithms with the Snort rulesets.
Compared with existing state reduction algorithms, DFA/EC

significantly increases inspection speed by keeping the number
of per-byte memory access to one, which is the minimum.
The size of our inspection program is also small enough to be
stored entirely in the cache memory. Evaluations with Snort
rule-sets demonstrate that DFA/EC can be very compact and
achieves high inspection speed. Specifically, DFA/EC can be
over four orders of magnitude smaller than DFA, and also has
a smaller memory bandwidth than DFA. It is also significantly
smaller than MDFA [1], and runs faster than DFA and MDFA.
The advantages of DFA/EC are summarized in the following:

1) DFA/EC requires only one memory access for each
byte in the packet payload, while significantly reducing
memory in terms of table size.

2) DFA/EC is conceptually simple, easy to implement, and
easy to update due to fast construction.

3) DFA/EC can be combined with other approaches to
provide a better level of compression.

The rest of this paper is organized as follows: Related work
is briefly covered and compared in Section II. Section III
introduces the concept of DFA/EC with a motivating example.
Section IV presents the formal model of DFA/EC and the its
DFA-equivalency condition. Section Vdescribes our efficient
implementation of DFA/EC and prove its DFA equivalency.
Section VI, evaluates DFA/EC using the Snort rule-sets and
synthetic traffics. Section VII concludes the paper. Notations
used are summarized in Table I.

II. RELATED WORK

Prior work on regular expression matching at line rate can
be categorized by their implementation platforms into FPGA-
based implementations [13], [14], [15], [16], [17] and general-

purpose processors and ASIC hardware implementations [1],
[2], [9], [10], [18], [19].

Existing DFA state compression techniques (e.g. MDFA [1],
HFA [9], XFA [20]) and transition compression techniques
(e.g. D2FA [2], CD2FA [18]) effectively reduce the memory
storage but introduce additional memory access per byte.

Delayed Input Deterministic Finite Automata (D2FA) [2]
uses default transitions to reduce memory requirements. If
two states have a large number of transitions in common, the
transition table of one state can be compressed by referring to
that of the other state. Unfortunately, when a default transition
is followed, memory must be accessed once more to retrieve
the next state.

Using auxiliary variables and devising a compact and effi-
cient inspection program is challenging and is most related
to our work. Two seminal papers [9], [20] use auxiliary
variables to represent the “factored out” auxiliary states and
reduce the DFA size. However, the auxiliary variables are
manipulated by auxiliary programs associated with each state
or transition, resulting in extra memory accesses to obtain the
auxiliary programs in addition to the state indexes. Secondly,
H-FA [9] uses conditional transitions that require a sequential
search. Moreover, the number of conditional transitions per
character can be very large in general rule-sets, which results
in a large transition table and a slow inspection speed. XFA
uses several automata transformations to remove conditional
transitions. However, to preserve semantics, XFA is limited to
one auxiliary state per regular expression, which is unsuitable
for complex regular expressions. On the other hand, EFA/EC
uses a single piece of program to generate its extended
characters, and it requires a single memory access for each
byte in the payload.

Hybrid-FA [9], [10] prevents state explosion by performing
partial NFA-to-DFA conversion. The outcome is a hybrid
automaton consisting of a head-DFA and several tail-automata.
The tail-automata can be NFA or DFA. However, maintaining
multiple DFA/NFA may introduce a large per-flow state and
scarify inspection speed. In [10], a character set is expanded to
represent conditional transitions. However, they used alphabet
compression [12] to compress the character set, which cannot
effectively reduce the size of the expanded character set when
there are multiple conditions on the transitions. Differently,
DFA/EC is a general model of DFA proposed to compress
transition table size. More importantly, we propose a new
encoding method to limit the extended character set to twice
its size, which is the key to make our DFA/EC model practical.

CompactDFA [3] and HEXA [11] compress the number
of bits required to represent each state, but they are only
applicable to exact string matching. Alphabet compression
[12] maps the set of characters in an alphabet to a smaller
set of clustered characters that label the same transitions for
a substantial amount of states in the automaton.

Recent security-oriented rule-sets include patterns with
advanced features, namely bounded repetitions and back-
references, which add to the expressive power of tradi-
tional regular expressions. However, they cannot be supported

3

[^I−R][^E−N]

[^I−R][^E−N]

.

H

[^C−L]

K[^C−L]

.

A

7654

3210

Fig. 1. The NFAs for “.*A[ˆC-L]+K” and “.*H[ˆE-N]+[ˆI-R]+”, respectively.

through pure DFAs [10], [21]. The bounded repetition, or
counting constraint, is a pattern that repeats a specific number
of times. The back-reference [5] is a previously matched
substring that is to be matched again later. DFA/EC can be
extended to support the above features in regular expressions
using the techniques in [9], [20]. We omit these advanced
features in this work for simplicity.

III. OVERVIEW OF DFA/EC

In this section, we will first review some preliminaries on
automata used in packet inspection, i.e. NFA and DFA. Then,
we provide a motivating example of DFA/EC.

A. Preliminaries

A regular expression describes a pattern of strings. Fea-
tures of regular expressions that are commonly used in net-
work intrusion detection systems include exact match strings,
character-sets, wildcards, and repetitions. As an example
throughout this paper, we use a rule-set consisting of two
regular expressions: “.*A[ˆC-L]+K” and “.*H[ˆE-N]+[ˆI-R]+”.
An exact match substring, such as “C”, is a pattern that occurs
in the input text exactly as it is. Character-sets, such as “[E-
N]”, matches any character between “E” and “N”, and “[ˆE-
N]” is the complement of “[E-N]”. A wildcard “.” is equal to
“[ˆ]” and matches any character. Repetition “.*” matches any
strings with a length from zero to infinity, and repetition “[ˆE-
N]+” matches nonempty strings containing characters in “[ˆE-
N]”. For instance, pattern “H[ˆE-N]+[ˆI-R]+” matches string
“HAT” and “HADST”.

NFA and DFA are popular pattern matching programs for
a set of one or more regular expressions. Figure 1 shows the
NFAs accepting the example regular expressions. In NFAs, the
number of states is not greater than the number of characters in
the regular expressions in the rule-set, even when the regular
expressions contain repetitions and character-sets. States 0
and 4 are initially active, and a match is reported when any
accepting state, e.g. 3 and 7, is active. In NFAs, multiple states
can be active simultaneously, and multiple memory accesses
are required to obtain the next transitions for all active states.
The sequence of the sets of active states when the example
NFA matches string “HAT” is:

(0, 4)
H→ (0, 4, 5)

A→ (0, 1, 4, 6)
T→ (0, 4, 6, 7)

A DFA can be constructed from NFAs using the subset
construction routine, in which a DFA state is created to

TABLE II
THE CASES OF EACH NFA STATE DUPLICATING DFA STATES AND THE

SCORES FOR THE NFA STATES IN FIGURE 1.

state 0 1 2 3 4 5 6 7
cases 0 7 7 1 0 2 7 8
scores 0 1 246 1 0 1 246 491

represent a set of NFA states that can be simultaneously active
in some matching process. Therefore, the number of DFA
states can be very large. Although, in practice, indexes are
assigned to DFA states to reduce space, we will regard a DFA
state as a set of NFA states in this paper. Let N be the set
of NFA states, D be the set of DFA states, and we have (1)
d ⊆ N , for any DFA state d ∈ D, (2) D ⊂ 2N (the power set
of N), and (3) usually |N | � |D| � |2N | = 2|N |. |N | � |D|
is usually true due to the state explosion problem. For example,
the DFA (which is not shown in this paper) constructed for the
example NFA with 8 states contains 18 states. On the other
hand, |D| � 2|N | because not all combinations of NFA states
can be simultaneously active.

B. Motivation and overview

Methods to resolve the state explosion problem have been
discussed in [1], [9], [20]. NFA states corresponding to the
repetitions of large character-sets, such as states 2, 6, and 7
in our example NFA, cause state explosion. The explanations
are that (1) these states are more likely to be active, and
(2) a frequently active NFA state is more likely to be active
simultaneously with other sets of states, which consequently
increases the number of simultaneously active sets of NFA
states, i.e. the number of DFA states. For example, state (0,1,4)
is in D, and the frequently active NFA state 2 duplicates it
and adds another state (0,1,2,4) into D. In Table II, for each
states n in our example NFA (Figure 1), we show the number
of cases where there exists a d ∈ D that satisfies d∩{n} ∈ D.

To reduce DFA size, we propose a novel method, called
DFA with extended character-set (DFA/EC). In a DFA/EC,
we select some of the most frequently active NFA states
and incorporate them into the character-set (or the alphabet)
of the DFA to form a slightly larger extended character-set.
There is a main DFA in DFA/EC that implements the rest of
the infrequently active NFA states and, therefore, the main
DFA has a small number of states. We call those NFA states
that are selected and incorporated into the character-set the
complementary states (N2); and we call the remaining NFA
states the main states (N1). As we will see in Section V,
we have constraints which exclude some of the frequently
active NFA states from the set of complementary states in
order to enable the single-bit encoding of the complementary
states in the extended character set and the efficient DFA/EC
implementation.

While the main DFA represents and processes the main
states, we call the remaining functionality in the DFA/EC the
complementary program, which deals with the complementary
states. The challenge in the design of DFA/EC is in the selec-
tion of a proper implementation such that the complementary

4

[^AC−L](T/F),{2}

A(T/F),{2}

[^AHK](T/F) K(T)

K(F)

H(T/F)

A(T/F)

[^AE−N](T/F),{6}

A(T/F),{6}

1−

5

3

(a) Main DFA

[^I−R][^E−N]

[^I−R]

[^C−L]

K

76

T2

(b) complementary states

Fig. 2. The DFA/EC for “.*A[ˆC-L]+K” and “.*H[ˆE-N]+[ˆI-R]+”.

program is very fast and that the main states N1 can be
implemented by a compact main DFA whose size, ideally,
is equal to |N1|.

In our implementation (see Section V), the main DFA of the
DFA/EC can be smaller than the corresponding conventional
DFA by over four orders of magnitude while the extended
character-set only doubles the size of the original character-
set. When a DFA/EC consumes a byte, the complementary
states are processed and the extended character-set is generated
efficiently by only a few instructions without any memory
access (Section V). Experiment results in Section VI show that
DFA/EC can be the fastest among the automata in comparison,
including DFA.

C. An illustration example of DFA/EC

From the NFAs in Figure 1, we construct a DFA/EC,
which is shown in Figure 2. Since we have not presented
how to select complementary states, we simply assume that
the complementary states are the NFA states 2, 6, and 7.
The main DFA constructed from the main states is shown in
Figure 2(a). For clarity, we make the following simplifications
in this figure: (1) in each DFA state, we remove the NFA states
0 and 4, which are always active in the state labels: state “1”
should actually be labeled with “0,4,1” and states “-” should
actually be labeled with “0,4”, and (2) some transitions to state
“-”, “1”, and “5” are removed. From this example, we can see
that the DFA/EC, which has only 4 states in its main DFA,
is very compact compared to the corresponding conventional
DFA (not shown) that has 18 states.

In our implementation, the extended character-set includes
the original character-set and an extra bit. This extra bit
represents a boolean value, which is encoded from the comple-
mentary states. For example, the label “K(T)” on the transition
from state “-” to “3” indicates that the transition is taken when
the next byte is “K” and the extra bit is true.

We require that the transitions in the main DFA can make
some complementary states active. For example, the transition
labeled by “[ˆAE-N](T/F),{6}” from states “-” to “5”, which is
taken when the next byte is in the character-set “[ˆAE-N]” and
the extra bit is either true or false, makes the complementary
state “6” active.

In Figure 2(b), the complementary states are temporarily
shown as an NFA, which is to be replaced by our efficient
implementation in Section V. One of the transitions from state
2 does not make any state active, but it sets the extra bit in
the extended character-set to true.

A DFA/EC maintains two states, one for the main DFA,
and another for the complementary program. In our example,
we represent the initial DFA/EC states as (-){}. For each
byte in the payload, the DFA/EC functions as follows: (1)
It calculates the extra bit for the extended character using
the complementary program. (2) It calculates the new main
DFA state using the current main DFA state and the extended
character. (3) It calculates the new state of the complementary
program using the current state of the complementary program
together with the label on the main DFA transition.

As an example, the sequence of the sets of active states
when the example DFA/EC matches string “ABK” is:

(−){} A→ (1){} B→ (−){2} K→ (3){}

Initially, the state of the main DFA is (-) and that of the
complementary program is {}. For the first input character ‘A’,
the extra bit is F (since no complementary state is active), the
transition labeled by “A(T/F)” from states “-” to “1” in the
main DFA is token, and no transition in the complementary
program is token (since no complementary state is active).
So, the resulting DFA/EC state is “(1){}”. For the second
input character ‘B’, the extra bit is F , the transition labeled by
“[ˆAC-L](T/F),{2}” from states “1” to “-” in the main DFA
is token, and no transition in the complementary program is
token. So, the resulting DFA/EC state is “(-){2}”. For the
third input character ‘K’, the extra bit is set to T since the
transition labeled by ‘K’ in (the NFA representation of) the
complementary program is token, and the transition labeled
by “K(T)” from states “-” to “3” in the main DFA is token.
So, the resulting DFA/EC state is “(3){}”.

In the above example, we have illustrated how the main
DFA and the complementary states interact with each other.
We will define a formal model for DFA/EC and show the
equivalence between DFA/EC and DFA in Section IV. An
efficient implementation of DFA/EC will be presented in
Section V.

IV. THE FORMAL MODEL OF DFA/EC

This section presents a formal model of DFA/EC and dis-
cusses the correctness of DFA/EC in terms of its equivalence
to a DFA.

A DFA/EC is a novel model of automata that generalizes
the conventional DFA. We denote D1 ⊂ 2N1 as the set of
simultaneously active sets of main states, D2 ⊂ 2N2 as the
set of simultaneously active sets of complementary states, C

5

as the original character-set (or alphabet), Ce as the extended
character-set, and D as the set of conventional DFA states. For
any state d in a DFA, a semantically equivalent DFA/EC has
a corresponding state {d1, d2}, such that d1 ∈ D1, d2 ∈ D2,
and d1 ∪ d2 = d. Here, d1 is a state of the main DFA
and d2 is a state of the complementary program. That is,
D1 = {d1|d1 = d ∩ N1, d ∈ D} is the set of main DFA
states and D2 = {d2|d2 = d ∩ N2, d ∈ D} is the set
of complete program states. A DFA/EC can be defined by
(D1, D2, C, C

e, He, T e, A), where: He : D2 × C → Ce

T e : D1 × Ce → D1 ×D2

A : D2 × C → D2

(1)

For each byte c ∈ C in the packet payload, a DFA/EC with
its current state being {d1, d2} functions as the following : (1)
Function He generates an extended character ce ∈ Ce using
d2 and c. (2) With d1 and ce, function T e generates a new
partial state {d1, d′2} where d1 is the new state of the main
DFA. (3) With d2 and the original character c, function A
generates a new partial state d′′2 , and d2 = d′2 ∪ d′′2 is the new
state of complementary program. In our implementation, T e is
the transition function of the main DFA, which is implemented
by a transition table and a lookup function. He and A together
form the complementary program, which is implemented by
several efficient instructions without any memory access.

Theorem 1 (The equivalence between DFA and DFA/EC):
For any DFA, there exists an equivalent DFA/EC.

Proof: If we let T : D×C → D be the transition function
of a DFA, we need to prove that for any DFA, there is an
equivalent DFA/EC, as defined by Equation 1. First, the DFA
defined by (D,C, T) can be equivalent to another form of DFA
(D1, D2, C, T11, T12, T21, T22), with D1∩D2 = φ, D1∪D2 =
D, and T11, T12, T21, T22 being transition functions:

T11 : D1 × C → D1

T12 : D1 × C → D2

T21 : D2 × C → D1

T22 : D2 × C → D2

(2)

The equivalence holds, as long as, for any d ∈ D, there
exists d1 ∈ D1, d2 ∈ D2 and d1 ∪ d2 = d, such that
T11(d1, c) ∪ T12(d1, c) ∪ T21(d2, c) ∪ T22(d2, c) = T (d, c).
Here, we regard d1 and d2 as sets of simultaneously active
NFA states and T11 is a transition function, which returns the
set of new active NFA states in D1 that is made active through
transitions from the set of previously active states d1 ∈ D1 on
character c. Equally, T12,T21, and T22 are transition functions
that return the sets of new active NFA states in D2, D1, D2 that
are made active through transitions from the sets of previously
active NFA states in D1, D2, D2, respectively. Obviously,
these functions exist and can be easily constructed with the
NFA corresponding to DFA (D,C, T).

In the following, we are going to construct a DFA/EC in
terms of functions T11, T12, T21, and T22. Since we only need
to prove the existence of such DFA/EC, we temporarily assume
Ce = D2×C, and use a trivial function He(d2, c) = {d2, c}.

Also, we break T e into two functions: T e
1 : D1 × Ce → D1

and T e
2 : D1 × Ce → D2. Then, we can define the functions

in DFA/EC as follows:

T e
1 (d1, c

e) = T e
1 (d1, {d2, c}) = T11(d1, c) ∪ T21(d2, c),

T e
2 (d1, c

e) = T e
2 (d1, {d2, c}) = T12(d1, c),

A(d2, c) = T22(d2, c).

Recall that, for each byte c, a DFA/EC updates its state
{d1, d2} with the following functions:

ce = He(d2, c), {d1, d′2} = T e(d1, c
e), d2 = d′2 ∪A(d2, c).

Therefore, for a new DFA/EC state {d1, d2},

d1 ∪ d2 = T e
1 (d1, c

e) ∪ (T e
2 (d1, c

e) ∪A(d2, c))

= (T11(d1, c)∪T21(d2, c))∪(T12(d1, c)∪T22(d2, c)) = T (d, c).

As a result, for any DFA, there is an equivalent DFA/EC.
In the above proof, we used trivial definitions for function

He and its range Ce, but the size of the extended character-
set |Ce| = |C| × |D2| can be very large. To reduce |Ce| and
preserve functional equivalence, we can use other definitions
for He and Ce, as long as the following equations are true:

T e
1 (d1, H

e(d2, c)) = T11(d1, c) ∪ T21(d2, c),
T e
2 (d1, H

e(d2, c)) = T12(d1, c).

Theorem 2 summarizes the conditions when a DFA/EC is
equivalent to a DFA. It will be used in Section V to prove the
correctness of our efficient DFA/EC implementation.

Theorem 2 (The DFA/EC–DFA equivalence conditions):
For a DFA defined by (D,C, T) with its equivalent
form (D1, D2, C, T11, T12, T21, T22) (see Equations 2) and
a DFA/EC defined by (D1, D2, C, C

e, He, T e, A), the
equivalence conditions are:

T e(d1, H
e(d2, c)) = {T11(d1, c) ∪ T21(d2, c)} × T12(d1, c),

(3)
A(d2, c) = T22(d2, c). (4)

Proof: It follows from the proof of Theorem 1.

V. AN EFFICIENT IMPLEMENTATION OF DFA/EC

A. Overview

We have presented the formal model of DFA/EC, which
removes part of a DFA state and incorporates this part with
the set of input characters into the extended character set.
However, this model cannot reduce the size of the transition
table since the increase in the size of the extended character
set |C|× |D2| can be more significant than the decrease in the
number of states |D1|, i.e., |C| × |D2| × |D1| > |C| × |D|.

This section presents an efficient implementation of
DFA/EC, which contains an encoding method. The encoding
method encodes the complementary state into a single bit
so that the the size of the extended character set merely
doubles as the number of states drops by orders of magnitude.
Specifically, we define He : D2 × C → C × B, which uses

6

a single bit to encode the current state of the complementary
program given the next byte in the payload.

Our efficient implementation of DFA/EC consists of (1) a
compact main DFA of size |D1| × 2 × |C|, which requires
only one memory access in its transition table for each byte
in the payload, and (2) a complementary program which
is efficient and runs without any memory access. Here, the
complementary program is very succinct so that, together with
the main DFA lookup program, it can be stored entirely in the
cache memory or in the on-chip memory.

The key challenge in our implementation is the selection of
the set of complementary states N2 such that (1) the number
of states |D1| of the main DFA is small, (2) we can encode the
complementary state into a single bit, and (3) the equivalence
condition in Theorem 2 holds.

B. Scoring the states

As discussed in Seciton III, the frequently active NFA states
are more likely to cause state explosion. Therefore, to get a
compact main DFA, we try to systematically identify those
NFA states and add them to the set of complementary states
N2. Our method is to score the states and add the states with
the highest scores into N2. It is noticeable that the NFA states
associated with repetitions of a large character-set, e.g. states 2,
6, and 7 in Figure 1, are likely to be frequently active [1], [9],
[20]. The reason is that, once a state is active, the chance that
the next byte in the payload falls into the character-set of the
repetition, increases as the size of the character-set increases.
Also, we observe that, if there is a transition from states, say
n1 to n2, on a large character-set, and n1 is frequently active,
then n2 is also frequently active. Based on the above two
reasons, we propose the following scoring rules:

1) States with exactly one incoming transition, which is
also a self-transition, e.g. states 0 and 4 in Figure 1, are
assigned score 0.

2) Other states with a self-transition on a character-set, say
C ′, are assigned score |C ′|.

3) Based on the score of the previous steps, if there is a
transition from states n1 to n2 (n1 6= n2) on a character-
set, say C ′′, and state n1 has a score |C ′|, then the score
of n2 is increased by min{|C ′|, |C ′′|}.

As an example, the scores of the states in the NFAs in
Figure 1 are shown in Table II. In the same table, we also
show the number of cases that each NFA state duplicates the
sets of other active states (see Section III). The NFA states that
have a high score also have a high number of such cases. Also,
when using 10 as a threshold, we can identify all frequently
active NFA states, i.e. states 2, 6, and 7. In our experiment in
Section VI, we use a heuristic to select 32 NFA states into N2

that have the highest scores and satisfy the two constraints to
be introduced below.

C. Determine the extended character-set

In order to encode the complementary state d2, we need
to put two constraints on the selection of the complementary
states. As a result, not all NFA states with the highest scores

are complementary states. The purpose is to reduce the range
of function He, which is also the size of the extended
character-set Ce. Otherwise, a large extended character-set
would undermine the advantage of reducing the number of
states D1 in the main DFA.

We define a function Co : N2 → C, which returns the set
of total characters on all the transitions from a complementary
state n2 ∈ N2 to some main states in N1. In Figure 1, for the
complementary states 2, 6, and 7, Co(2) = K and Co(6) =
Co(7) = φ. We define a non-conflicting complementary set as
a complementary set N2 such that Co(ni) ∩ Co(nj) = φ, for
any ni, nj ∈ N2. If N2 is non-conflicting, then we can define
a reverse function C ′

o : C → N2 as:

C ′
o(c) =

{
n, c ∈ Co(n), n ∈ N2

φ, c /∈ ∪n∈N2Co(n)

Here, Co is reversible since any character-set c can be in at
most one Co(n) for some n ∈ N2, when N2 is non-conflicting.

With N2 being non-conflicting, we define the extended
character-set as Ce = C × B and function He as He :
D2 × C → C × B, where B = {T, F} is the boolean set.
Specifically, He(d2, c) = {c, T{C ′

o(c) 6= φ}}, where d2 ∈ D2

(d2 ⊆ N2) is the current state of the complementary program,
and T{C ′

o(c) 6= φ} is a true function which returns either true
or false (T/F), depending on whether the enclosed condition
is satisfied. Here, C ′

o(c) 6= φ means, on character c, there is a
transition from a state n2 ∈ N2 to some states in N1.

With the non-conflicting constraint, for each main state d1 ∈
D1, each character c ∈ C, and each value of He (T/F), there
is exactly one transition in the main DFA. Therefore, the state
of the complementary program can be encoded by a single
bit for a given byte, and the size of the extended character-set
can be reduced to |Ce| = 2|C|. The following theorem states
that, with our definition of He, the first equivalence condition
(Equation 3) in Theorem 2 is satisfied.

Theorem 3 (The correctness of He): If N2 is non-
conflicting, there exists a function T e such that
T e(d1, H

e(d2, c)) = {T11(d1, c) ∪ T21(d2, c)} × T12(d1, c).
Proof: Let T e = T e

1 × T e
2 . First, we define

T e
2 (d1, H

e(d2, c)) = T12(d1, c). Then, we only need to prove
that T e

1 (d1, H
e(d2, c)) = T11(d1, c) ∪ T21(d2, c). We define

T e
1 as T e

1 (d1, H
e(d2, c)) ={

T11(d1, c), if C ′
o(c) = φ

T11(d1, c) ∪ T21({C ′
o(c)}, c), if C ′

o(c) 6= φ
(5)

Since N2 is non-conflicting, for a given c, there is at most
one n ∈ d2 (n = C ′

o(c)) transition to a set of one or more
main states. In the case that n does not exist, C ′

o(c) = φ and
T21(d2, c) = φ. In the case that C ′

o(c) 6= φ, T21({C ′
o(c)}, c) =

T21(d2, c) because n = C ′
o(c) is the only active state in d2

that has transitions to some states in N1 on character c.
To summarize, with the non-conflicting constraint on N2

and our definition of He, the extended character-set Ce =
C × B, whose size is twice that of the original character-set
C. At first glance, the non-conflicting constraint may exclude
many states from N2. Fortunately, this constraint excludes few

7

Algorithm 1 The DFA/EC simulator
1: e← d2&A21[c]
2: {d1, d′2} ← Tx[d1][c · e]
3: d2 ← (d2&A2[c])|((d2&A22[c])� 1)|d′2

states from N2 in practical rule-sets with a large number of
regular expressions. This is because, most states transit to only
one other state, and for a state n1 whose score is high and who
has a transition to another state n2 on a large character-set,
the score of n2 is likely to be high too, and in this case,
Co(n1) = φ. Therefore, it is likely that, for a n ∈ N2, Co(n)
is either of small size or equal to φ, and non-conflicting is not
a stringent constraint.

D. The efficient complementary program

Recall that, in our DFA/EC defined in Equation 1, func-
tion T e is implemented by a transition table and a lookup
function, and functions He and A are implemented by the
complementary program. For the efficient implementation of
He and A, we have one more constraint on the selection of
the complementary states N2: we call a set of complementary
states binary, if each n ∈ N2 can transit to at most one other
state in N2. Note that the binary constraint is in terms of
the transitions within N2, while the non-conflicting constraint,
defined previously, concerns transitions from states in N2 to
states in N1.

We show the implementation of function A first, followed
by He. From Theorem 2, it is required that A = T22 for
the equivalence of DFA/EC and DFA. First, if the binary
constraint is satisfied, the states in N2 can be arranged such
that, if there is a transition from ni to nj , then j = i + 1.
Second, we represent the states in N2 with an array of bits,
and we use the ith bit to represent state ni. Third, we can
represent the transitions within N2 with two sets of bit masks,
A2 and A22. For each character c ∈ C, A2[c] and A22[c]
are the bit masks for c. The ith bit in A2[c] being one
means that state ni has a transition to itself on character
c, and the ith bit in A22[c] being one means that state ni
has a transition to state ni+1 on character c. Let d2 ⊂ N2

be represented by a bit array with the ith bit being one or
zero representing whether state ni is active, then the next
state of the complementary program can be calculated by
d2 = A(d2, c) = (d2&A2[c])|((d2&A22[c])� 1), where &, |,
� are the bitwise AND, OR, SHIFT operations, respectively.
Clearly, A = T22 implements the transitions within N2.

Similarly, we define another set of bit masks A21 for
different c ∈ C, and the ith bit in A21[c] being one means
that the state ni has a transition to some main states in N1

on character c. Then, He(d2, c) = {c, T{d2&A21[c] 6= 0}}.
The masks A2, A22, and A21 of the DFA/EC in Figure 2 are
shown in binary digits in Table III(b-d), respectively.

The main DFA is implemented by a lookup program and a
transition table Tx with its two dimensions being the state
indexes of the main DFA and the extended character-set.
The pseudo code for the execution of a DFA/EC is listed

Algorithm 2 The construction of the main DFA table
1: D ← the set of conventional DFA states
2: for each (d in D)
3: d1 ← d ∩N1

4: for each (c in C)
5: d′1 = T (d1, c) ∩N1

6: d′′1 = T (d1 ∪N2, c) ∩N1

7: d′2 = T (d1, c) ∩N2

8: Tx[d1][c · F] = {d′1, d′2}
9: Tx[d1][c · T] = {d′′1 , d′2}

in Algorithm 1, where e is a boolean value representing the
result of function He. The concatenation c · e is the extended
character created from c and e.

Now, let us discuss the memory requirement and the
memory bandwidth of DFA/EC. The size of the main DFA
table depends on the number of states in the main DFA,
the size of the extended character-set 2|C|, and the encoded
size of each transition entry, i.e. {d1, d′2}. Let the number
of states in the main DFA be |D1|, the bits required to
encode the index for d1 is dlog2 |D1|e. Note that the value
of d′2 = T e

2 (d1, H
e(d2, c)) = T12(d1, c) is irrelevant to the

value of He and it can ideally be stored once for each c. In
practice, we do not have to represent d′2 explicitly as a bit-array
of length |N2| since the set of all possible values of d′2, which
can be represented by a set of bit-arrays, denoted by A12, are
very limited in number, and we can use the index of d′2 in
A12 to represent d′2. Therefore, the total size of the transition
table is |D1| × |C| × (2 × dlog2 |D1|e + dlog2 |A12|e) bits,
and the memory bandwidth is dlog2 |D1|e+ dlog2 |A12|e bits.
A DFA/EC needs to maintain its current state, i.e. {d1, d2},
which takes dlog2 |D1|e+ |N2| bits.

E. The construction of DFA/EC

The data needed to be constructed for a DFA/EC are: the
main DFA table Tx, the sets of bit-masks A2, A22, and A21.
The construction of the main DFA table, which implements
function T e

1 , as defined in Equation 5, is shown in Algorithm 2,
where we regard each DFA state as a set of NFA states and
assume T to be a function that returns the new set of active
NFA states, given the old set of active NFA states and the
next byte. We use all states in a constructed conventional DFA
to determine the possible main DFA states, because not all
the combinations of main states in N1 can be simultaneously
active. We will study more efficient DFA/EC construction
without using a constructed DFA in our future work.

The transition table Tx of the main DFA and the masks A2,
A22, and A21 of our example DFA/EC in Figure 2 are shown in
Table III. In Table III(a), the first column shows the indexes of
the states in the main DFA, the second column shows the sets
of simultaneously active main states represented by the main
DFA states, and all the remaining columns are transitions.
Each cell in the transition table consists of three values, which
are the results of the functions T e

1 (d1, {c, F}), T e
1 (d1, {c, T}),

8

TABLE III
TABLES IN THE DFA/EC IN FIGURE 2.

(a) The main DFA table T e

state# d1 ⊆ N1 [ˆAC-N] A [CD] [E-GIJL] H K [MN]
0 accept (0,3,4) 2, 2, 000B 3, 3, 000B 2, 2, 000B 2, 2, 000B 1, 1, 000B 2, 2, 000B 2, 2, 000B

1 (0,4,5) 2, 2, 010B 3, 3, 010B 2, 2, 010B 2, 2, 000B 1, 1, 000B 2, 2, 000B 2, 2, 000B
2 start (0,4) 2, 2, 000B 3, 3, 000B 2, 2, 000B 2, 2, 000B 1, 1, 000B 2, 0, 000B 2, 2, 000B

3 (0,1,4) 2, 2, 100B 3, 3, 100B 2, 2, 000B 2, 2, 000B 1, 1, 000B 2, 0, 000B 2, 2, 100B

(b) The masks A21

K
A21 100B

(c) The masks A22

[ˆI-R]
A22 010B

(d) The masks A2

[MN] [O-R] [ˆC-R] [CD] [E-H]
A2 100B 110B 111B 011B 001B

and T e
2 (d1, {c, T/F}), respectively. As we can see in Ta-

ble III(a), values of T e
1 (d1, {c, F}) and T e

1 (d1, {c, T}) are
represented by indexes, and they are equal in most cases.
Values of T e

2 (d1, {c, T/F}) are shown in binary digits, and
there are only three different values (i.e. 000B , 010B , and
100B). This shows that there is room for further compression
in DFA/EC with transition compression techniques [12].

VI. EVALUATION

In our experiment, we endeavored the following efforts:
First, we developed several compilers, which read files of
rules and create the corresponding inspection programs and
the transition tables for DFA, MDFA [1], H-FA [9], and
DFA/EC. Second, we extracted rule-sets from the Snort [6],
[7] rules. Third, we developed a synthetic payload generator.
We generate the inspection programs for the rule-sets, measure
their storages, and feed them with the synthetic payloads to
measure their performances.

We compare with DFA and MDFA [1]. MDFA divides
the rule-set into M groups and compiles each group into a
distinct DFA. Although our algorithm can be combined with
MDFA, i.e. we can replace the individual DFAs in a MDFA
with DFA/ECs, we compare our algorithm with this widely
adopted algorithm to show the efficiency of our method in
terms of storage, memory bandwidth, and speed. We compare
with 2DFA, 4DFA, and 8DFA, which are MDFAs with 2, 4,
and 8 paralleled DFAs, respectively.

Since our algorithm is for state compression, we do not
compare our algorithm with other types of algorithms that
are orthogonal and complementary to our algorithm, such as
transition compression [2] and alphabet compression [12]. We
will examine how well DFA/EC can be combined with them in
the future. We do not show the results of H-FA [9] because,
with our rule-sets, it has very large numbers of conditional
transitions per character, which results in significant memory
requirements and memory bandwidth. We did not implement
XFA [20] because the XFA compiler, which employs compli-
cated compiler optimization technologies, is not available.

Our compilers are based on the Java regular expression
package “java.util.regex.*”. Our compilers generate NFA data
structures instead of parser trees, as in the original implemen-
tation. All Perl-compatible features, except back-reference and
counters, are supported. Our compilers output C++ and Java

files for NFAs, DFAs, H-FA, and DFA/ECs. The construction
of the DFA/ECs is as efficient as the construction of DFAs.

We extracted rule-sets from Snort [6], [7] rules released
Dec. 2009. Rules in Snort have been classified into different
categories. We adopt a subset of the rule-set in each category,
such that each rule-set can be implemented by a single DFA
using less than 2GB of memory. Almost all patterns in our
rule-sets contain repetitions on large character-sets.

Each payload file consists of payload streams of 1KB, and
the total size of each payload file is 64MB. To generate
a payload stream for a rule-set, we travel the DFA of the
whole rule-set. We count the visiting times of each state,
and give priority to the less visited states and non-acceptance
states. This traffic generator can simulate malicious traffics
[22], which prevent the DFA from traveling only low-depth
states, as it does in normal traffics. We do not use normal
traffic since it would result in similar performance across all
inspection programs, as only a small number of shallow states
are travelled in normal traffic.

A. Results on memory requirements

We measure the memory requirement of each inspection
program in terms of (1) the number of states, (2) the number
of transitions, and (3) the bits needed to store the transitions.
Ideally, the number of states determines the number of bits
required to encode a state index. As shown in Table IV(a), the
number of states in a DFA/EC can be four orders of magnitude
smaller than that of a DFA, two orders of magnitude smaller
than a 2DFA, 5 times smaller than a 4DFA, and comparable
to that of an 8DFA. The significant reduction is because of
the removal of the frequently active complementary states in
DFA/EC, which otherwise causes the exponential expansion
in the number of DFA states.

The number of transitions is the sum of the numbers of
transitions of each state. The number of transitions of each
state is measured by the number of distinguished states it can
transit to. In other words, we measure the minimum possible
number of transitions in any state and transition encoding
technique, which is not our focus. As shown in Table IV(c),
the number of transitions of DFA/EC can be four orders of
magnitude smaller than that of a DFA, two orders of magnitude
smaller than a 2DFA, 2 times smaller than a 4DFA, and
comparable to that of an 8DFA.

9

TABLE IV
THE MEMORY REQUIREMENTS WITH DIFFERENT RULE-SETS.

(a) The total number of states (percentage to DFA).
DFA DFA/EC 2DFA 4DFA 8DFA

exploit-19 343k 0.06% 2% 0.3% 0.1%
smtp-36 141k 0.4% 6% 0.6% 0.3%
specific-threats-21 53k 2% 7% 2% 1%
spyware-put-93 269k 1% 18% 5% 1%
web-client-35 106k 3% 14% 1% 0.7%
web-misc-28 453k 0.08% 3% 0.3% 0.1%

(b) The size of the per-flow state (bits / words).
DFA DFA/EC 2DFA 4DFA 8DFA

exploit-19 19 / 1 23 / 2 25 / 2 32 / 4 48 / 8
smtp-36 18 / 1 38 / 2 22 / 2 31 / 4 46 / 8
specific-threats-21 16 / 1 31 / 2 21 / 2 31 / 4 47 / 8
spyware-put-93 19 / 1 39 / 2 27 / 2 43 / 4 70 / 8
web-client-35 17 / 1 33 / 2 24 / 2 37 / 4 56 / 8
web-misc-28 19 / 1 30 / 2 26 / 2 36 / 4 56 / 8

(c) The total number of transitions (percentage to DFA).
DFA DFA/EC 2DFA 4DFA 8DFA

exploit-19 7m 0.04% 1% 0.1% 0.02%
smtp-36 2m 0.4% 6% 0.2% 0.07%
specific-threats-21 702k 3% 6% 1% 0.3%
spyware-put-93 7m 1% 7% 2% 0.3%
web-client-35 2m 4% 7% 0.6% 0.2%
web-misc-28 8m 0.08% 2% 0.1% 0.04%

(d) The transition storage (bits/percentage to DFA).
DFA DFA/EC 2DFA 4DFA 8DFA

exploit-19 124m 0.03% 1% 0.06% 0.008%
smtp-36 37m 0.3% 4% 0.1% 0.02%
specific-threats-21 11m 2% 4% 0.6% 0.1%
spyware-put-93 141m 1% 6% 1% 0.1%
web-client-35 40m 3% 6% 0.3% 0.1%
web-misc-28 155m 0.05% 1% 0.08% 0.01%

We measure the total minimum memory (storeage) re-
quirement of the transition tables in terms of bits, and the
number of bits is the product of the number of transitions
and the number of bits needed to encode each transition. For
DFA, MDFA, and DFA/EC, the number of bits needed to
encode each transition are dlog2 |D|e,

∑M
i=1dlog2 |Di|e, and

dlog2 |D1|e+ dlog2 |A12|e, respectively. Here, D is the set of
DFA states, Di is the set of DFA states in the ith DFA of a
MDFA, D1 is the set main DFA states of a DFA/EC, and A12

is the set of masks of a DFA/EC required to implement the
transition function T12. As shown in Table IV(d), the transition
storage of a DFA/EC can be four orders of magnitude smaller
than that of a DFA, two orders of magnitude smaller than a
2DFA, and 2 times smaller than a 4DFA.

Finally, we measure the sizes of the per-flow state of the
inspection programs in terms of bits and words. In terms of
bits, the per-flow state for DFA, MDFA, and DFA/EC are
dlog2 |D|e,

∑M
i=1dlog2 |Di|e, and dlog2 |D1|e + N2, respec-

tively. Here, N2 is the number of complementary states in a
DFA/EC. As shown in Figure IV(b), DFA/EC has small sizes
of per-flow state in terms of both bits and words.

B. Results on memory bandwidth and speed

Memory bandwidth is the amount of memory access per
byte in the payload, which we measure it in terms of bits.
The memory bandwidth of DFA, MDFA, and DFA/EC are
dlog2 |D|e,

∑M
i=1dlog2 |Di|e, and dlog2 |D1|e+ dlog2 |A12|e,

respectively. In Figure 3(a), it is exciting to see that the
memory bandwidth of DFA/EC can be smaller than DFA and
is much smaller than MDFAs. To our best knowledge, we are
the first to report a inspection program for rule-sets of regular
expressions whose bandwidth is smaller than that of DFA.

In Figure 3(b), we show the number of memory accesses
per KB of payload. DFA/EC and DFA have the minimum
number of memory accesses, while those of MDFAs increase
proportional to M .

We measure the speed of the inspection programs using
Java and C++ implementations in a Unix machine with 4GB

of memory and a 3GHz Intel Core 2 Duo CPU. Note that the
speeds of the inspection programs depend on the hardware and
software on which they are implemented. For example, with
general-purpose processors and ASIC hardware, they vary in
different amounts of cache or on-chip memory.

Results are shown in Figures 3(c-d). In several cases,
DFA/EC is the fastest in both implementations, and DFA/EC
can be over 10 times faster than DFA and two times faster
than MDFA in Java. MDFA is fast because of its compact
transition table size and the large amount of cache memory in
our platform. We believe that DFA/EC will be more favorable
for the implementations in ASIC hardware or GPUs that have
less cache memory and more computation resources.

The experiment results suggest that our Java programs are
faster than our C++ programs in terms of instruction execution,
but are slower in terms of memory access. We believe this is
due to the difference between the Java and the g++ compilers:
the Java just-in-time (JIT) compilation is better optimized
to the targeted CPU and OS. On the other hand, memory
access in Java is slower because that Java programs perform
additional data security checks, such as null pointer checks
and array index out of bound checks.

C. Summary

Our experiment results show that DFA/EC can be over four
orders of magnitude smaller than DFA in terms of number
of states and transitions. DFA/EC also has a smaller memory
bandwidth and runs faster than DFA.

VII. CONCLUSION

In this paper, we investigated a general-purpose proces-
sor and regular expressions based deep packet inspection
algorithm, called deterministic finite automata with extended
character-set (DFA/EC). Different from existing state reduc-
tion algorithms, our solution requires only a single memory
access for each byte in the traffic payload, which is the
minimum. We performed experiments with Snort rule-sets and
synthetic payloads. Experiment results show that a DFA/EC

10

Fig. 3. Memory bandwidth, memory accesses, and inspection speed with different rule-sets (milliseconds per 64MB).

0

10

20

30

40

50

60

70

M
e
m

o
ry

 b
a
n
d
w

id
th

 (
b
it
s
)

exploit−19
smtp−36

specific−threats−21

spyware−put−93

web−client−35

web−misc−28

DFA
DFA/EC
2DFA
4DFA
8DFA

(a) Memory bandwidth (bits)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
a
in

 m
e
m

o
ry

 a
c
c
e
s
s
e
s
 (

ti
m

e
s
/K

B
)

exploit−19
smtp−36

specific−threats−21

spyware−put−93

web−client−35

web−misc−28

DFA
DFA/EC
2DFA
4DFA
8DFA

(b) Memory accesses (times/KB)

0

2000

4000

6000

8000

10000

12000

14000

In
s
p
e
c
ti
o
n
 s

p
e
e
d
 (

m
s
/G

b
)

exploit−19
smtp−36

specific−threats−21

spyware−put−93

web−client−35

web−misc−28

DFA
DFA/EC
2DFA
4DFA
8DFA

(c) Inspection speed (Java)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

In
s
p
e
c
ti
o
n
 s

p
e
e
d
 (

m
s
/G

b
)

exploit−19
smtp−36

specific−threats−21

spyware−put−93

web−client−35

web−misc−28

DFA
DFA/EC
2DFA
4DFA
8DFA

(d) Inspection speed (C++)

can be over four orders of magnitude smaller than a DFA,
has a smaller memory bandwidth, and runs faster than a DFA.
In the future, we will study efficient DFA/EC construction
algorithms without using DFA, combine DFA/EC with the
existing transition compression and character-set compression
techniques, and perform experiments with more rule-sets.

REFERENCES

[1] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast
and Memory-Efficient Regular Expression Matching for Deep Packet
Inspection. In Proc. of ANCS, 2006.

[2] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algo-
rithms to Accelerate Multiple Regular Expressions Matching for Deep
Packet Inspection. In Proc. of ACM SIGCOMM, September 2006.

[3] A. Bremler-Barr, D. Hay, and Y. Koral. CompactDFA: Generic State
Machine Compression for Scalable Pattern Matching. In Proc. of IEEE
INFOCOM, 2010.

[4] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic
Memory-Efficient String Matching Algorithms for Intrusion Detection.
In Proc. of IEEE INFOCOM, 2004.

[5] K. Namjoshi and G. Narlikar. Robust and Fast Pattern Matching for
Intrusion Detection. In Proc. of IEEE INFOCOM, 2010.

[6] M. Roesch. Snort: Lightweight Intrusion Detection for Networks. In
Proc. of 13th System Administration Conf., November 1999.

[7] Snort: http://www.Snort.org/.
[8] V. Paxson. Bro: A System for Detecting Network Intruders in Real-

Time. In Computer Networks, December 1999.
[9] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing

Regular Expressions Matching Algorithms From Insomnia. In Proc.
of ANCS, 2007.

[10] M. Becchi and P. Crowley. A Hybrid Finite Automaton for Practical
Deep Packet Inspection. In Proc. of CoNEXT, 2007.

[11] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher. HEXA:
Compact Data Structures for Faster Packet Processing. In Proc. of IEEE
INFOCOM, 2009.

[12] S. Kong, R. Smith, and C. Estan. Efficient Signature Matching With
Multiple Alphabet Compression Tables. In Proc. of Securecomm, 2008.

[13] R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching Using
FPGAs. In Proc. of FCCM, 2001.

[14] B. L. Hutchings, R. Franklin, and D. Carver. Assisting Network Intrusion
Detection With Reconfigurable Hardware. In Proc. of FCCM, 2002.

[15] C. R. Clark and D. E. Schimmel. Efficient Reconfigurable Logic Circuit
for Matching Complex Network Intrusion Detection Patterns. In Proc.
of FLP, 2003.

[16] B. Brodie, R. Cytron, and D. Taylor. A Scalable Architecture For High-
Throughput Regular-Expression Pattern Matching. In Proc. of ISCA,
2006.

[17] A. Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE to FPGA for
Accelerating SNORT IDS. In Proc. of ANCS, 2007.

[18] S. Kumar, J. Turner, and J. Williams. Advanced Algorithms for Fast
and Scalable Deep Packet Inspection. In Proc. of ANCS, 2006.

[19] L. Tan and T. Sherwood. A High Throughput String Matching Archi-
tecture for Intrusion Detection and Prevention. In Proc. of ISCA, 2005.

[20] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the Big Bang: Fast
and Scalable Deep Packet Inspection with Extended Finite Automata.
In Proc. of ACM SIGCOMM, 2008.

[21] M. Becchi and P. Crowley. Extending Finite Automata to Efficiently
Match Perl-Compatible Regular Expressions. In Proc. of CoNEXT, 2008.

[22] M. Becchi, M. Franklin, and P. Crowley. A Workload for Evaluating
Deep Packet Inspection Architectures. In Proc. of IISWC, 2008.

